Search results for "Generalized Fourier series"
showing 2 items of 2 documents
Inner functions and local shape of orthonormal wavelets
2011
Abstract Conditions characterizing all orthonormal wavelets of L 2 ( R ) are given in terms of suitable orthonormal bases (ONBs) related with the translation and dilation operators. A particular choice of the ONBs, the so-called Haar bases, leads to new methods for constructing orthonormal wavelets from certain families of Hardy functions. Inner functions and the corresponding backward shift invariant subspaces articulate the structure of these families. The new algorithms focus on the local shape of the wavelet.
Wavelet-like orthonormal bases for the lowest Landau level
1994
As a first step in the description of a two-dimensional electron gas in a magnetic field, such as encountered in the fractional quantum Hall effect, we discuss a general procedure for constructing an orthonormal basis for the lowest Landau level, starting from an arbitrary orthonormal basis in L2(R). We discuss in detail two relevant examples coming from wavelet analysis, the Haar and the Littlewood-Paley bases.